Using SAS/STAT to evaluate the impact of business interventions: A gentle introduction to some frequently used tools

Melodie Rush Senior Systems Engineer

CUSTOMER LOYALTY TEAM • Support You Can Count On

THE POWER TO KNOW:

Scenario

- You work for a supermarket and the supermarket is offering a new line of organic products. Management wants to determine which customers are likely to purchase these products.
- So you decided to send coupons to customers that are in your loyalty program so you can see which ones buy items from the new organic line.
- You have collected the data and now you need to determine information about your customers that have bought the organic line items.
- You have SAS Base and SAS/Stat

Organics Data Table (first 10 rows)

Row number	Customer Loyalty ID	Age	Gender	Loyalty Status	Total Spend	Loyalty Card Tenure	Organics Purchase Indicator	Organics Purchase Count	PrePromAmt	Diff_Amt
1	000000140	76		3. Gold	16000	4	0	0	0	0
2	000000620	49		3. Gold	6000	5	0	0	0	0
3	000000868	70	Female	2. Silver	0.02	8	1	1	0	1
4	000001120	65	Male	1. Tin	0.01	7	1	1	0	1
5	000002313	68	Female	1. Tin	0.01	8	0	0	0	0
6	0000002771	72		4. Platinum	20759.81	3	0	0	0	0
7	000003131	74	Female	1. Tin	0.01	8	0	0	0	0
8	000003328	62	Male	1. Tin	0.01	5	0	0	0	0
9	0000004529	62	Male	2. Silver	2038.76	3	0	0	0	0
10	000005886	43	Female	3. Gold	6000	1	1	1	0	1

Observations 22,223 **Variables** 14

CUSTOMER LOYALTY TEAM • Support You Can Count On

4

POWER TO KNOW

Data

Inique Customer ID
Affluence grade on a scale from 1 to 30
ge, in years
ype of Residential Neighborhood – 55 levels
leighborhood group - 7 levels
I=Male, F=Female
Demographic Region
oyalty status: tin, silver, gold, or platinum
otal amount spent
ime as loyalty card member
Organics purchased? 1=Yes, 0=No
lumber of organic products purchased during promotion
lumber of organic products purchased before promotion
ARGETAMT - PREPROMAMT

CUSTOMER LOYALTY TEAM • Support You Can Count On Copyright © 2011, SAS Institute Inc. All rights reserved.

First Things First...Categorical Variables

The FREQ Procedure

Organics	Organics Purchase Indicator							
TargetBuy Frequency Percent								
0	16718	75.23						
1	5505	24.77						

Organic	Organics Purchase Count						
TargetAmt Frequency Percer							
0	16718	75.23					
1	4625	20.81					
2	715	3.22					
3	165	0.74					

Loyalty Status						
Loyalty Status	Frequency	Percent				
1. Tin	6487	29.19				
2. Silver	8572	38.57				
3. Gold	6324	28.46				
4. Platinum	840	3.78				

Gender						
DemGender	Frequency	Percent				
	2512	-				
F	12149	61.64				
М	5815	29.50				
U	1747	8.86				

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

POWER TO KNOW

First Things First...Categorical Variables

The FREQ Procedure

Organics	Organics Purchase Indicator							
TargetBuy Frequency Percent								
0	16718	75.23						
1	5505	24.77						

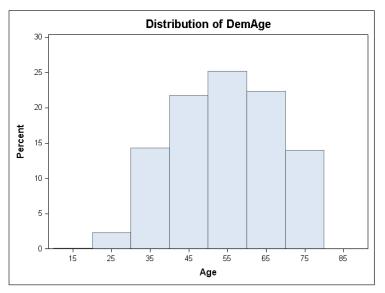
Organic	Organics Purchase Count						
TargetAmt Frequency Per							
0	16718	75.23					
1	4625	20.81					
2	715	3.22					
3	165	0.74					

Loyalty Status						
Loyalty Status	Frequency	Percent				
1. Tin	6487	29.19				
2. Silver	8572	38.57				
3. Gold	6324	28.46				
4. Platinum	840	3.78				

Gender						
Gender Frequency Percen						
	4259					
Female	12149	67.63				
Male	5815	32.37				

Frequency Missing = 4259

7

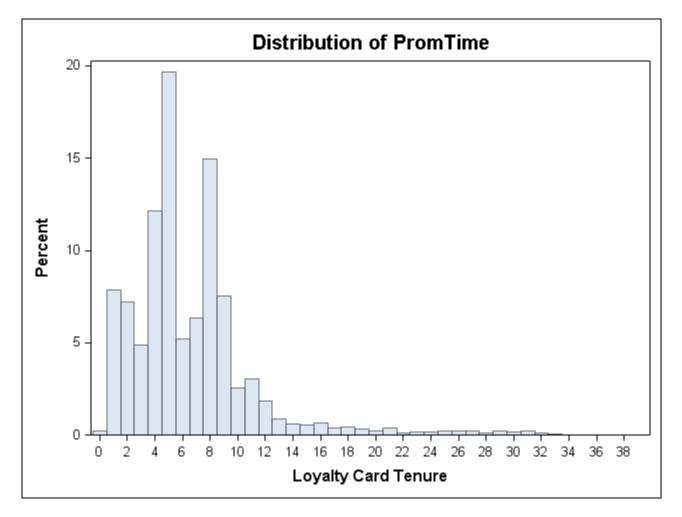

CUSTOMER LOYALTY TEAM • Support You Can Count On

First Things First...Continuous Variables

The MEANS Procedure

Variable	Label	Mean	Std Dev	Minimum	Maximum	N	N Miss
PromSpend	Total Spend	4420.6	7559.0	0.0	296313.9	22223	0
PromTime	Loyalty Card Tenure	6.6	4.7	0.0	39.0	21942	281
DemAge	Age	53.8	13.2	18.0	79.0	20715	1508

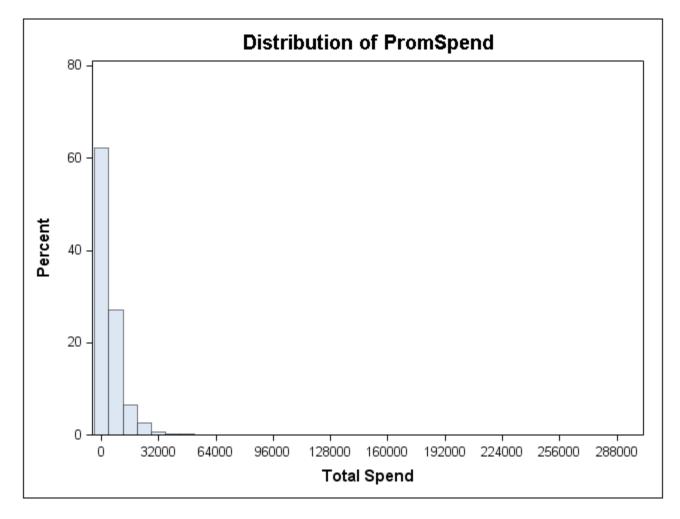
The UNIVARIATE Procedure


CUSTOMER LOYALTY TEAM · Support You Can Count On

8

A picture is worth...

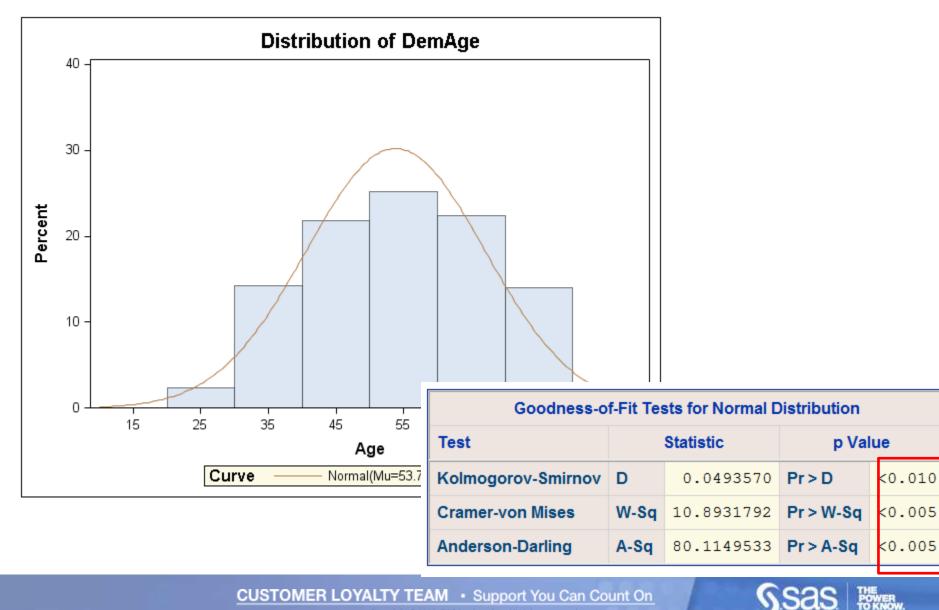
The UNIVARIATE Procedure


CUSTOMER LOYALTY TEAM · Support You Can Count On

9

A picture is worth...

The UNIVARIATE Procedure



CUSTOMER LOYALTY TEAM • Support You Can Count On Copyright © 2011, SAS Institute Inc. All rights reserved.

Is it Normal?

The UNIVARIATE Procedure

Just to clear things up...

- SAS Base
- FREQ
- MEANS
- UNIVARIATE

- SAS/STAT
- T-Test
- NPAR1WAY
- ANOVA
- REG
- LOGISTIC

STAT

Base

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

12

Association

- An association exists between two variables if the distribution of one variable changes when the level (or value) of the other variable changes
- If there is no association, the distribution of the first variable is the same regardless of the level of the other variable

Tests of Association

Null Hypothesis

- There is no association between GENDER and TARGETBUY
- The probability of purchasing organic items is the same whether you are male or female

Alternative Hypothesis

- There is an association between GENDER and TARGETBUY
- The probability of purchasing organic items is different between males and females

Base

Chi-Square Test

No Association

- Observed frequencies = expected frequencies
 Association
- Observed frequencies ≠ expected frequencies
 The FREQ Procedure

Frequency	Table of Gender by TargetBuy						
Expected		TargetBuy(Organics Purchase India					
	Gender(Gender)	0	1	Total			
	Female	7,944 8,652	4,205 3,497	12,149			
	Male	4,849 4,141	966 1,674	5,815			
	Total	12,793	5,171	17 , 964			
	Frequency Missing = 4259						

15

PROC FREQ DATA = mydata.organics2 ORDER=INTERNAL; TABLES Gender * TargetBuy / FORMAT=COMMA8. NOROW NOCOL NOPERCENT **EXPECTED** NOCUM ALPHA=**0.05**;

RUN;

CUSTOMER LOYALTY TEAM • Support You Can Count On

Chi-Square Test

Chi-square tests and the corresponding p-values

- Determine whether an association exists
- Do not measure the strength of an association
- Depend on and reflect the sample size

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

17

p-value for Chi-Square Test

- Probability of observing a chi-square statistic at least as large as the one actually observed, given that there is not association between the variables
- Probability of the association you observe in the data occurring by chance

Adding Chi-Square to our FREQ Output Base

The FREQ Procedure

Frequency	Table of Gender by TargetBuy					
Expected Cell Chi-Square		TargetBuy(Organics Purchase Indic				
Row Pct	Gender(Gender)	0	1	Total		
	Female	7,944 8,652 57.915 65.39	4,205 3,497 143.28 34.61	12,149		
	Male	4,849 4,141 121 83.39	966 1,674 299.35 16.61	5,815		
	Total	12,793	5,171	17,964		
	Frequency Missing = 4259					

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

POWER TO KNOW

Base

PROC FREQ DATA = mydata.organics2 **ORDER=INTERNAL;** TABLES Gender * TargetBuy / FORMAT=COMMA8. NOCOL NOPERCENT **CELLCHI2 EXPECTED** NOCUM **CHISQ** ALPHA=0.05;

CUSTOMER LOYALTY TEAM • Support You Can Count On

Adding Chi-Square to our FREQ Output Base (continued)

Statistics for Table of Gender by TargetBuy

	Statistic	DF	Value	Prob
\langle	Chi-Square	1	621.5507	<.0001
	Likelihood Ratio Chi-Square	1	662.3524	<.0001
	Continuity Adj. Chi-Square	1	620.6729	<.0001
	Mantel-Haenszel Chi-Square	1	621.5161	<.0001
	Phi Coefficient		-0.1860	
	Contingency Coefficient		0.1829	
	Cramer's V		-0.1860	

CUSTOMER LOYALTY TEAM • Support You Can Count On

Strength of Association

Cramer's V Statistic

- -1 to 1 for 2 by 2 tables
- 0 to 1 for larger tables
- Values further away from 0 indicate the presence of a relatively strong association

Adding Chi-Square to our FREQ Output Base (continued)

Statistics for Table of Gender by TargetBuy

Statistic	DF	Value	Prob
Chi-Square	1	621.5507	<.0001
Likelihood Ratio Chi-Square	1	662.3524	<.0001
Continuity Adj. Chi-Square	1	620.6729	<.0001
Mantel-Haenszel Chi-Square	1	621.5161	<.0001
Phi Coefficient		-0.1860	
Contingency Coefficient		0.1829	
Cramer's V		-0.1860	

When not to use Chi-Square

- When more than 20% of cells have expected counts less than five
- In this case use Fisher's Exact Test

CUSTOMER LOYALTY TEAM · Support You Can Count On

Example for Fisher's Exact Test

Row number	Product	Purchased
1	A	yes
2	А	yes
3	А	yes
4	А	no
5	в	yes
6	в	no
7	В	no
8	В	no
9	в	no

CUSTOMER LOYALTY TEAM • Support You Can Count On

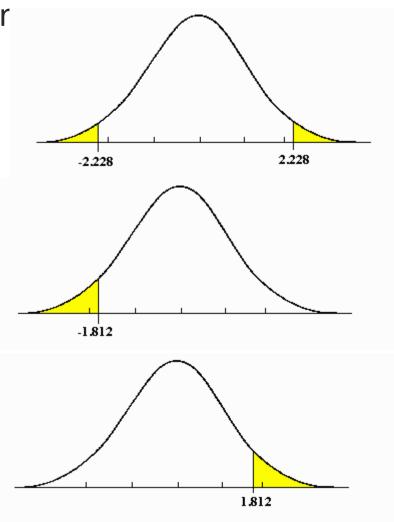
Copyright © 2011, SAS Institute Inc. All rights reserved.

THE POWER TO KNOW.

NSdS

Fisher's Exact Test

- Useful when sample sizes are small (less than 20-25 total)
- 2x2 tables
- Calculates probabilities by considering every possible table where the marginal (row and column totals remain fixed)
- Large datasets may require a prohibitive amount of time and memory for computing exact p-value.



Fisher's Exact Test Hypothesis

Null Hypothesis: No Associatior

Alternative Hypothesis:

- Two-Tailed
- Left-tailed
- Right-tailed

FREQ output

Base

Frequency	Table of Product by Purchased					
Expected Cell Chi-Square		P	urchased			
Col Pct	Product	no	yes	Total		
	A	1 2.2222 0.6722 20.00	3 1.7778 0.8403 75.00	4		
	В	4 2.7778 0.5378 80.00	1 2.2222 0.6722 25.00	5		
	Total	5	4	9		

Statistic	DF	Value	Prob
Chi-Square	1	2.7225	0.0989
Likelihood Ratio Chi-Square	1	2.8626	0.0907
Continuity Adj. Chi-Square	1	0.9506	0.3296
Mantel-Haenszel Chi-Square	1	2.4200	0.1198
Phi Coefficient		-0.5500	
Contingency Coefficient		0.4819	
Cramer's V		0.5500	
WARNING: 100% of the cells h than 5. Chi-Square may			

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

THE POWER TO KNOW.

Ssas

FREQ – Fisher's Exact Test

Fisher's Exact Te	st
Cell (1,1) Frequency (F)	1
Left-sided Pr <= F	0.1667
Right-sided Pr >= F	0.9921
Table Probability (P)	0.1587
Two-sided Pr <= P	0.2063

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

Base

29

Mantel Haenszel Chi-Square test

Good with Ordinal association

- Means as one variable increases the other variable tends to increase or decrease
- Need to have one variable with more than 2 levels

Null Hypothesis:

There is no ordinal association between the row and column variables

Alternative Hypothesis:

There is an ordinal association between the row and column variables.

Mantel Haenszel Chi-Square test

The FREQ Procedure

Frequency	Table of I	LoyaltyStatus b	y TargetBuy	
Expected Cell Chi-Square	Loyalty Status (Loyalty	TargetBuy(Or	ganics Purchas	se Indicator)
Row Pct	Status)	0	1	Total
	1. Tin	4458 4880.1 36.503 68.72	2029 1606.9 110.86 31.28	6487
	2. Silver	6460 6448.6 0.0202 75.36	2112 2123.4 0.0615 24.64	8572
	3. Gold	5088 4757.4 22.968 80.46	1236 1566.6 69.751 19.54	6324
	4. Platinum	712 631.92 10.149 84.76	128 208.08 30.82 15.24	840
	Total	16718	5505	22223

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

THE POWER TO KNOW

Base

Mantel Haenszel Chi-Square test

Statistics for Table of LoyaltyStatus by TargetBuy

Statistic	DF	Value	Prob	
Chi-Square	3	281.1281	<.0001	
Likelihood Ratio Chi-Square	3	283.1617	<.0001	
Mantel-Haenszel Chi-Square	1	278.2499	<.0001	
Phi Coefficient		0.1125		
Contingency Coefficient		0.1118		
Cramer's V		0.1125		

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

Base

Strength of Association

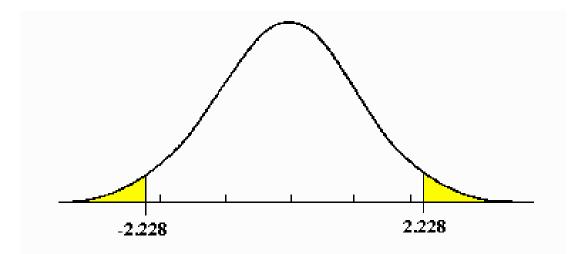
Spearman Correlation Statistic

- Range -1 to 1
- Values close to 1, relatively high degree of positive correlation
- Values close to -1, relatively high degree of negative correlation
- Only valid if both variables are ordinally scaled and in logical order

Mantel Haenszel Chi-Square test with Spearman Correlation

Statistic	Value	ASE	95% Confidence Limits	
Gamma	-0.2072	0.0121	-0.2309	-0.1835
Kendall's Tau-b	-0.1047	0.0062	-0.1168	-0.0926
Stuart's Tau-c	-0.1057	0.0063	-0.1180	-0.0934
Somers' D C R	-0.0773	0.0046	-0.0863	-0.0683
Somers' D R C	-0.1418	0.0083	-0.1581	-0.1254
Pearson Correlation	-0.1119	0.0065	-0.1247	-0.0991
Spearman Correlation	-0.1121	0.0066	-0.1250	-0.0991
Lambda Asymmetric C R	0.0000	0.0000	0.0000	0.0000
Lambda Asymmetric R C	0.0000	0.0000	0.0000	0.0000
Lambda Symmetric	0.0000	0.0000	0.0000	0.0000
Uncertainty Coefficient C R	0.0114	0.0013	0.0088	0.0140
Uncertainty Coefficient R C	0.0053	0.0006	0.0041	0.0065
Uncertainty Coefficient Symmetric	0.0072	0.0008	0.0055	0.0089

CUSTOMER LOYALTY TEAM · Support You Can Count On



POWER

Base

t-test

- 1. One Sample
- 2. Two Sample
- 3. Paired

CUSTOMER LOYALTY TEAM · Support You Can Count On

THE POWER TO KNOW

Sas

t-test -One Sample

Parametric test to compare sample mean with known value

- Null Hypothesis: H_0 : μ = hypothesized value
- Alternative Hypothesis: H_a : $\mu \neq$ hypothesized value

For our Example $\mu = 47$

Assumptions

- The data consist of independently chosen random samples
- The sample size is large

STAT

t-test -One Sample

PROC TTEST DATA = mydata.organics PLOTS(ONLY)=SUMMARY ALPHA=0.05H0 =47CI = EQUAL;

VAR DemAge; BY TargetBuy; RUN;

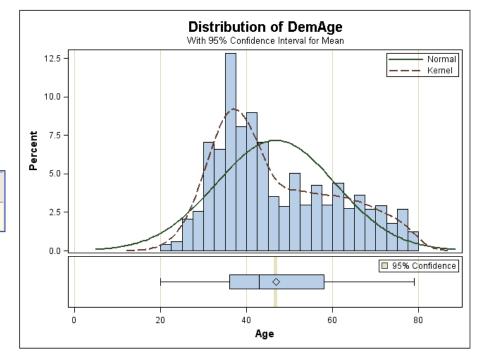
Can also calculated in PROC UNIVARIATE

CUSTOMER LOYALTY TEAM • Support You Can Count On

t-test -One Sample

Organics Purchase Indicator=1

t Test


The TTEST Procedure

Variable: DemAge (Age)

N	Mean	Std Dev Std Err		Minimum		
5100	46.8063	13.9384	0.1952	20.0000	79.0000	

Mean	95% CL Mean		Std Dev	95% CL	Std Dev
46.8063	46.4236	47.1889	13.9384	13.6731	14.2143

DF	t Value	Pr > t
5099	-0.99	0.3210

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

POWER TO KNOW

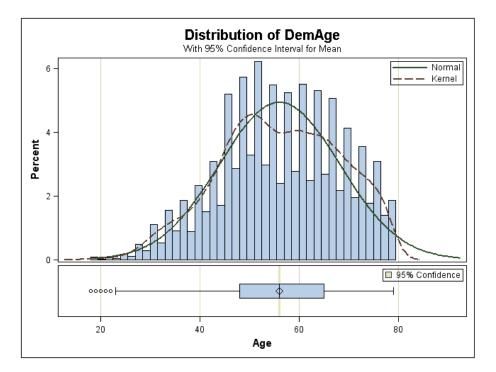
STAT

t-test -One Sample

STAT

Organics Purchase Indicator=0

t Test


The TTEST Procedure

Variable: DemAge (Age)

N	Mean	Mean Std Dev Std Err		Minimum		
15615	56.0804	12.1137	0.0969	18.0000	79.0000	

	95% CL Mean				
56.0804	55.8904	56.2705	12.1137	11.9808	12.2496

DF	t Value	Pr > t
15614	93.67	<.0001

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

Sas Hower

T-test – Two Sample

Parametric test to compare two independent samples

- Null Hypothesis: $H_0: \mu_1 = \mu_2$
- Alternative Hypothesis: H_a : $\mu_1 \neq \mu_2$

For our Example μ_1 is amount Females spent during the promotion μ_2 is amount Males spent during the promotion

Assumptions

- Independent Observations
- Normally distributed responses for each group
- Equal variances for each group

STAT

t-test -One Sample

PROC TTEST DATA = mydata.organics PLOTS(ONLY)=SUMMARY ALPHA=0.05 H0 =0 CI = EQUAL;

CLASS Gender; VAR PromSpend; RUN;

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

t-test –Two Sample t Test

STAT

The TTEST Procedure

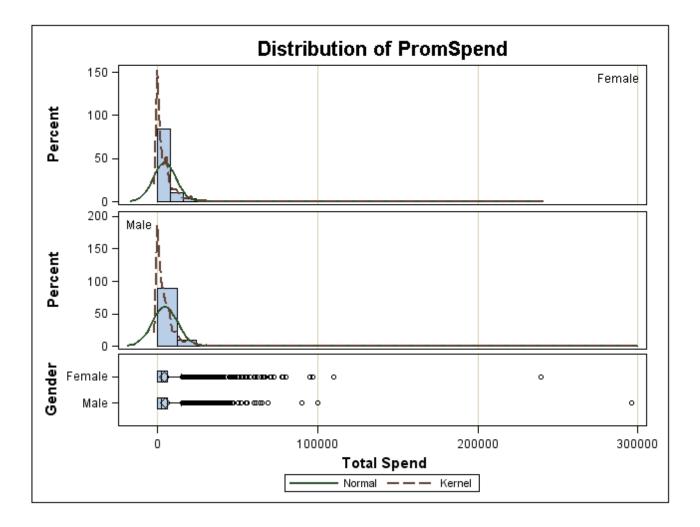
Variable: PromSpend (Total Spend)

		Gender	N	Mean	Std Dev	Std Err	Minimum	Maximum
Descriptive	<u> </u>	Female	12149	4260.5	7128.8	64.6762	0.0100	239542
Statistics	-	Male	5815	4592.6	7889.6	103.5	0.0100	296314
		Diff (1-2)		-332.0	7383.6	117.7		

Gender	Method	Mean	95% (CL Mean	Std Dev	95% CL	Std Dev
Female		4260.5	4133.7	4387.3	7128.8	7040.3	7219.6
Male		4592.6	4389.7	4795.4	7889.6	7748.8	8035.7
Diff (1-2)	Pooled	-332.0	-562.8	-101.3	7383.6	7308.1	7460.8
Diff (1-2)	Satterthwaite	-332.0	-571.2	-92.8713			

Go with Unequal Variance Test

	Method	Variances	DF	t Value	Pr > t
Go with Unequal	Pooled	Equal	17962	-2.82	0.0048
Variance Test	Satterthwaite	Unequal	10480	-2.72	0.0065
valiality 1951					


Equality of			Equalit	ty of Varia	nces	
	\longrightarrow	Method	Num DF	Den DF	F Value	Pr > F
Variance		Folded F	5814	12148	1.22	<.0001

42

Copyright © 2011, SAS Institute Inc. All rights reserved.

t-test –Two Sample

CUSTOMER LOYALTY TEAM • Support You Can Count On

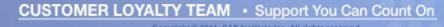
Copyright © 2011, SAS Institute Inc. All rights reserved.

THE POWER TO KNOW.

STAT

T-test – Paired

Parametric test to compare repeat measures on the same subject


- Null Hypothesis: $H_0: \mu_{post} = \mu_{pre}$
- Alternative Hypothesis: H_a : $\mu_{post} \neq \mu_{pre}$

For our Example

μ_{post} is amount of organic items bought during promotion μ_{pre} is amount of organic items bought before promotion

Assumptions

- The subjects are selected randomly
- The distribution of the sample mean differences is normal

t-test –Two Sample

STAT

t Test

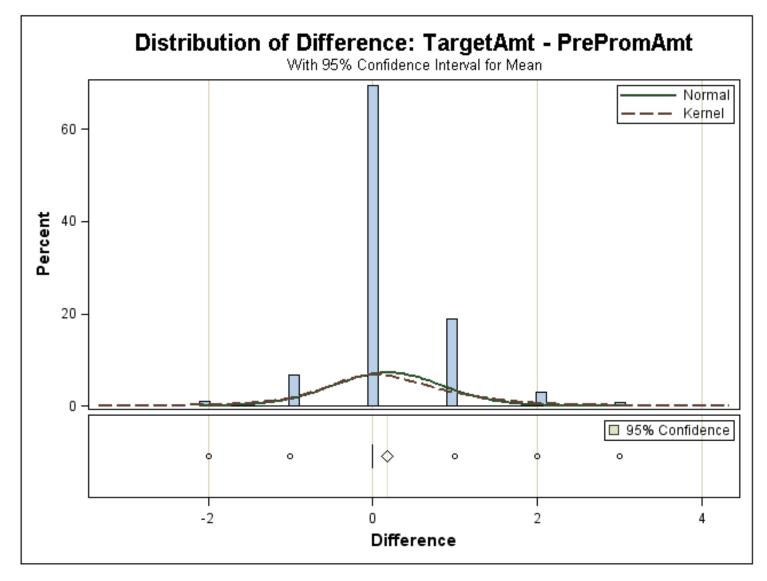
The TTEST Procedure

Difference: TargetAmt - PrePromAmt

N	Mean	Std Dev	Std Err	Minimum	Maximum
22223	0.1798	0.6690	0.00449	-2.0000	3.0000

Mean	95% CL Mean		Std Dev 95% C		Std Dev	
0.1798	0.1710	0.1886	0.6690	0.6628	0.6752	

DF t Valu		e Pr > t	
22222	40.06	<.0001	


CUSTOMER LOYALTY TEAM • Support You Can Count On

POWER

t-test –Two Sample

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

POWER TO KNOW

STAT

Nonparametric Analysis

Nonparametric analysis are those that rely only on the assumption that the observations are independent

A nonparametric test is appropriate when

- The data contains valid outliers
- The data is skewed
- The response variable is ordinal and not contiguous

Nonparametric Analysis

- The rank of each data point is used instead of the raw data
 - Rank from smallest to largest
 - In the event of a tie the ranks are averaged
- For 2 level variables Wilcoxon rank-sum test is used
- For more than 2 levels Kruskal-Wallis test is used

PROC NPAR1WAY

Null Hypothesis: H_0 : all populations are identical with respect to scale, shape, and location **Alternative Hypothesis:** H_a : all populations are not identical with respect to scale, shape, and location

- Only assumption is that you have independent observations
- Used with ordinal, interval and ratio measurement variables

PROC NPAR1WAY – 2 levels

PROC NPAR1WAY DATA=organics2 WILCOXON MEDIAN; VAR Diff_Amt; CLASS Gender; RUN;

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved

STA

PROC NPAR1WAY – 2 levels

The NPAR1WAY Procedure

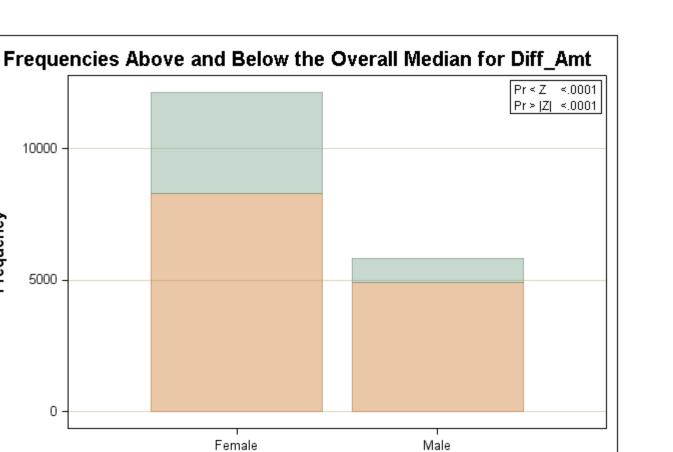
Wilcoxon Scores (Rank Sums) for Variable Diff_Amt Classified by Variable Gender					
Gender	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
Female	12149	114836825	109128393	271388.619	9452.36847
Male	5815	46524805.5	52233237.5	271388.619	8000.82640
Average scores were used for ties.					

Wilcoxon Two-Sample Test		
Statistic	46524805.5000	
Normal Approximation		
z	-21.0342	
One-Sided Pr < Z	<.0001	
Two-Sided Pr > Z	<.0001	
t Approximation		
One-Sided Pr < Z	<.0001	
Two-Sided Pr > Z	<.0001	
Z includes a continuity correction of 0.5.		

Ssas

STAT

CUSTOMER LOYALTY TEAM • Support You Can Count On


Copyright © 2011, SAS Institute Inc. All rights reserved.

POWER TO KNOW

PROC NPAR1WAY – 2 levels

Frequency

Gender
Not Above the Median
Above the Median

CUSTOMER LOYALTY TEAM • Support You Can Count On Copyright © 2011, SAS Institute Inc. All rights reserved.

52

STAT

PROC NPAR1WAY - > 2 levels

proc sort data=mydata.organics2 out=organics2; by loyaltyStatus;

PROC NPAR1WAY DATA=organics2 WILCOXON MEDIAN; VAR Diff_Amt; CLASS LoyaltyStatus;

RUN;

CUSTOMER LOYALTY TEAM • Support You Can Count On

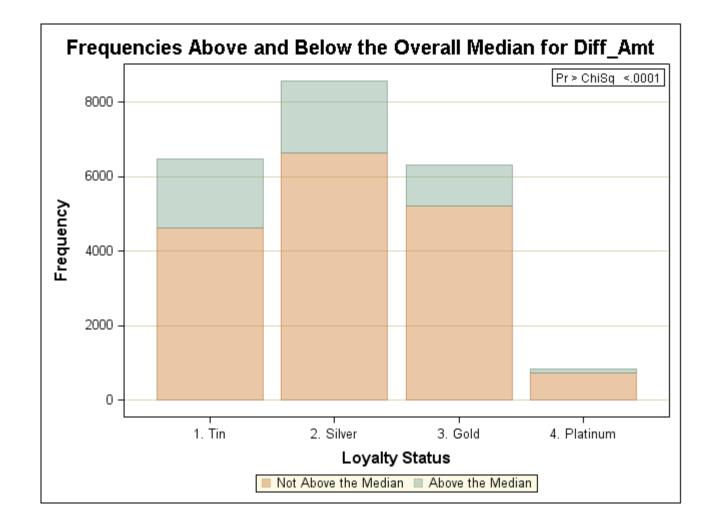
PROC NPAR1WAY

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Diff_Amt Classified by Variable LoyaltyStatus					
Loyalty Status	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
1. Tin	6487	76643119.0	72083544.0	352231.776	11814.8788
2. Silver	8572	95164849.5	95252064.0	377122.743	11101.8257
3. Gold	6324	66574842.5	70272288.0	349574.903	10527.3312
4. Platinum	840	8559165.0	9334080.0	147752.001	10189.4821
Average scores were used for ties.					

Kruskal-Wallis Test		
Chi-Square	225.1912	
DF	3	
Pr > Chi-Square	<.0001	

CUSTOMER LOYALTY TEAM • Support You Can Count On


Copyright © 2011, SAS Institute Inc. All rights reserved.

Ssas

PROC NPAR1WAY

STAT

CUSTOMER LOYALTY TEAM • Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

POWER TO KNOW

Bonus Section from Customer Loyalty

- Technical Team made up of 16 members
- 250 years at SAS
- 342 years of SAS experience

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

Bonus Section from Customer Loyalty

- 1. <u>Support.sas.com</u>
- 2. Don't carry excess baggage in programs
 - Use Keep and Drop options on DATA and SET statements
 - Take advantage of SAS indexes when possible
 - Use First. and Last. In data steps
- 3. Creating dummy variables in PROC SQL
- 4. Use multiple @'s in front of macro variables
- 5. SAS Enterprise Guide

Public SAS Courses

 Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression

Online Tutorials

- SAS Online Resources for Statistics Education
 - t-tests
 - Tests of Association
 - » Pearson Chi-Square
 - » Mantel-Haenszel Chi-Square
 - Nonparametric Analysis

The one place for all your SAS Training needs. Support.sas.com/training

It's where you'll find the latest information on:

- New training courses and services
- Special offers and discounts
- The latest course schedules
- New training locations
- Events and conferences
- SAS certification news
- · And, much more.

Everything you need – in one place. Visit and bookmark it today.

CUSTOMER LOYALTY TEAM • Support You Can Count On Copyright © 2011, SAS Institute Inc. All rights reserved.

Online Resources

- Exact Methods in the NPAR1WAY Procedure
- Support.sas.com summary and SAS/Stat Documentation
- SAS/Stat 9.2 User's Guide The NPAR1WAY Procedure
- SAS/Stat 9.3 User's Guide The NPAR1WAY Procedure
- An Overview of Non-parametric Tests in SAS: When, Why and How

General SAS Resources

- What's New in SAS 9.3 Book
 - <u>http://support.sas.com/documentation/cdl/en/whatsnew/64209/H</u> <u>TML/default/viewer.htm#bookInfo.htm</u>
- SAS/Stat Newsletter
 - <u>http://support.sas.com/community/newsletters/index.html</u>
- Stat, IML, OR, ETS Papers
- Discussion Forum
- Videos
 - Youtube.com

http://www.youtube.com/playlist?list=PL0B05D53A5E101AA6

Video portal to the STAT and OR focus area.
http://support.sas.com/rpd/app/video/index.html

http://support.sas.com/rnd/app/video/index.html

Thank you for using SAS!

Copyright © 2011, SAS Institute Inc. All rights reserved.